Tag Archives: Data Science

Thèmes abordés sur Twitter durant l’élection provinciale de 2012

quebecois_couvSuite à la visualisation des tweets publiés durant la grève étudiante, le professeur Frédérick Bastien de l’Université de Montréal m’a approché afin de participer à l’ouvrage Les Québécois aux urnes.

J’ai donc rédigé un chapitre traitant des thèmes abordés sur les médias sociaux. L’élément central du chapitre était une visualisation de tous les tweets publiés durant la campagne électorale.

Continue Reading

Distribution du financement politique à Montréal

test

Comme lors des années précédentes, La Presse a conçu une carte du financement politique à Montréal. Les responsables de ces cartes (Cédric Sam, Pierre-André Normandin et Thomas de Lorimier) ont dû composer avec l’absence de données gouvernementales standardisées et contacter chaque parti politique pour obtenir ces données.

Le résultat est très intéressant et ils font preuve d’une très grande générosité en partageant les données recueillies. Les données ouvertes comprennent la latitude et la longitude de chaque don ce qui facilite leur utilisation dans les logiciels GIS comme ArcGIS et Quantum GIS. Je me suis donc amusé ce dimanche à analyser et créer des cartes illustrant la distribution des dons. La carte à gauche illustre les concentrations de financement pour chaque parti. Par exemple, il y a une concentration de financement pour Projet Montréal sur le Plateau, Villeray et Hochelaga.

Cliquez sur le lien à droite pour lire (et voir!) la suite >>

Continue Reading

A Map of the Geographic Structure of Wikipedia Topics

Wikipedia Topic 260

Mountains, peaks, summits, etc.

A large number of Wikipedia articles are geocoded. This means that when an article pertains to a location, its latitude and longitude are linked to the article. As you can imagine, this can be useful to generate insightful and eye-catching infographics. A while ago, a team at Oxford built this magnificent tool to illustrate the language boundaries in Wikipedia articles. This led me to wonder if it would be possible to extract the different topics in Wikipedia.

This is exactly what I managed to do in the past few days. I downloaded all of Wikipedia, extracted 300 different topics using a powerful clustering algorithm, projected all the geocoded articles on a map and highlighted the different clusters (or topics) in red. The results were much more interesting than I thought. For example, the map on the left shows all the articles related to mountains, peaks, summits, etc. in red on a blue base map.  The highlighted articles from this topic match the main mountain ranges exactly.

Read on for more details, pretty pictures and slideshows.
Continue Reading